EECS 325/425 Project 2

Due December 2 before class

In this project, you will get an experience conducting a real Internet measurement. The experiment
involves testing how good the actual server selection mechanism is in a real content delivery network.
Specifically, you will try to discover a number of CDN servers, then imitate a Web download from several
hosts, and then compare the distance between those hosts and the servers the CDN has selected for
download with the distance between the same hosts and the other CDN servers (which were not selected).
As is often the case in real Internet experiments, you will rely on existing tools, and your rate of progress
will some times be beyond your control. The tool you will be using is our own DipZoom, available at
dipzoom.case.edu. The project involves the following steps:

e Lay the groundwork. Familiarize yourself with DipZoom and a measurement study of CDN,
which describes a mechanism for CDN server discovery (Su et al, “Drafting behind Akamai”,
SIGCOMM’2006, available in the projects folder). Read sections 1-6 of the paper that describes
DipZoom (http://dipzoom.case.edu/files/documents/sigmetrics2007.pdf). Although the
programming interface has changed since that paper was written, it provides a good introduction
into what the system does. (In particular, you will see multiple references for paying for
measurements in DipZoom. The payment mechanism is not enabled.) For the actual API, read
user manual (http://dipzoom.case.edu/files/documents/DipZoomClientDocumentation.pdf).

e Install a DipZoom measuring point (MP) and the client on your computer. Download the client
library, which you will be using to implement your experiments.

e Discover as many CDN servers as you can, using the technique described in the “Drafting” paper.
Hint: use “nslookup” or “dig” measurements from a number of widely distributed measuring
points as you can for a hostname of objects delivered by Akamai. Debug your measurements
using your own MP before submitting measurement requests to other MPs. You should aim at
discovering around 50 servers.

e Use the same measuring points to measure the distance to the CDN server selected by Akamai for
a given MP and compare it with the distance from the same MP to other CDN servers that you
discovered in the previous step. Try to use the RTT (using ping measurements) and the web
download bandwidth (using wget or curl measurements). Think of the best way to present your
results. [One possibility: Let A be the server selected by Akamai, and B be the best server among
other servers. Compute the ratio of metric(A)/metric(B). For RTT, the ratio below 1 indicates
good server selection. Now, plot a CDF graph of these ratios for a number of different MPs. The
CDF graph has the values of this ratio as the argument; for a given ratio value R, the value of the
CDF function is the percentage of the MPs whose ratio is below R. You should use around 50
MPs in this experiment.] Hint: to force a download of an object from a particular CDN server, use
its IP address instead of hostname in the object URL. For this to work, you need to specify an
appropriate value of HTTP HOST header in the wget or curl request. (See Section 2.2 of our
paper available at http://dipzoom.case.edu/files/documents/how_big_sigmetrics09.pdf for details.)
Comment on the quality of Akamai’s server selection.

e (EECS 425 only) Apply some heuristics to divide all MPs into well-connected MPs (these are
typically MPs running on PlanetLab nodes — a set of well-connected publicly available servers
provided by universities around the world, which can be identified by 3-4 digit MPIDs) and
residential MPs (typically connected via a DSL line; there will be a bunch of these running on
your classmates’ laptops but there are also a small number elsewhere). Do your findings about
the quality of Akamai’s server selection change if you consider these MP classes separately?

e (EECS 425 only) Pick a host that you can traceroute, e.g., eecs.case.edu. Discover the network
paths leading from the MPs to this host. (Think of heuristics you would use to deal with
anomalies such as unresponsive hops in the traceroute, that is, those hops for which the traceroute
outputs “*”, or a situation where a hop is represented by a different router in some of the three
probes.). Construct a multicast shortest path tree from the host to around 50 MPs using the

network topology you discovered. While constructing the shortest path tree, you should run the
Dijkstra’s algorithm and assume every link cost is 1. As a measurement result from this step,
please report the total bandwidth consumed by multicasting a datagram over your distribution tree
as opposed to unicasting the datagram separately to the 50 MP hosts from their corresponding
CDN servers selected by Akamai for PC World or another customer with many egde servers.
(What would be an appropriate metric for measuring the total bandwidth consumption?) Note: we
assume here that the multicast tree is constructed using a reverse shortest path technique since we
are using traceroutes fo rather than from the web site. What would be more beneficial from the
perspective of reducing network utilization: using IP multicast directly from the Web server or
delivering content from Akamai edge servers?

Deliverables: You should submit your work in electronic format using electronic drop-box. Your
submission should include

(1)

)

€)

All source code, including your source code for the Java programs implementing your
measurements, the source code for post-processing the collected routes, the Java code for the
multicast tree construction, and a README file to explain your implementation and the
instructions to compile/run/test it.

The measurement data in the following form: (a) the MP IP address, hostname, country, state, and
city (b) the CDN server selected for this MP by Akamai (c) the best server among non-selected
servers and (d) the metric ratios according to the two metrics considered

A report describing your results

Total points: 85 (EECS325)/130 (EECS425)

Hints and comments:

Please do not wait until the last minute. You will discover that conducting a realistic experiment
takes a long time (may be days or weeks), may be frustrating, and does not always depend on you.
So, try to at least progress to the point beyond external dependencies (collect all the measurement
data).

Because collecting measurements is a pain, you might consider splitting the entire experiment in
steps and running steps separately. For example, the discovery step can be run as a separate
experiment.

